Computers & Security (2005) 24, 308—321

ELSEVIER

Computers
& Security

www.elsevier.com/locate/cose

T Secure information systems
development — a survey and comparison

Rodolfo Villarroel?, Eduardo Fernandez-Medina®*, Mario Piattini®

2Departamento de Computacion e Informdtica, Universidad Catdlica del Maule, Chile
bDepartamento de Informdtica, Universidad de Castilla-La Mancha, Paseo de la Universidad no 4,

13071 Ciudad Real, Spain

Received 22 July 2004; revised 22 July 2004; accepted 6 September 2004

KEYWORDS
Security;
Confidentiality;
Security design;
Multidimensional
modeling;

UML;

Secure information
systems
development;

Comparison framework

Introduction

Abstract Nowadays, security solutions are mainly focused on providing security
defences (such as firewalls, routers, configuration server, password and encryption)
instead of solving one of the main reasons of security problems that refers to an
appropriate information systems design. Fortunately, there have been developed
new methodologies incorporating security into their development processes. This
paper makes a comparison of eleven secure systems design methodologies. The
analysed methodologies fulfil criteria partially and in this paper, we make it clear
that security aspects cannot be completely specified by these methodologies since
they have a series of limitations that we have to take into account. At the same
time, each one of these methodologies comprises very important aspects
concerning security that can be used as a basis for new methodologies or
extensions that may be developed.

© 2004 Elsevier Ltd. All rights reserved.

(1999), the concept of security refers to the
capability of a software product to protect data

Security is a ‘‘horizontal” aspect of software
development that affects very closely each com-
ponent of an application and, its integration into
the software development process is not appropri-
ately understood. According to ISO/IEC 15408-1

* Corresponding author. Tel. +34 926295300; fax: +34
926295354.

E-mail addresses: rvillarr@spock.ucm.cl (R. Villarroel),
eduardo.fdezmedina@uclm.es (E. Fernandez-Medina),
mario.piattini@uclm.es (M. Piattini).

and information in order to avoid that unautho-
rized individuals or systems are able to read and
modify them and not to deny access to authorized
staff. Castano et al. (1995) refer to computing
security as the protection of information against
unauthorized queries, inappropriate modifications
or the lack of availability of a service in a given
moment. Sometimes, databases and data ware-
houses also store information regarding private or
personal aspects of individuals, such as identifica-
tion data, medical data or even religious beliefs,

0167-4048/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cose.2004.09.011

mailto:rvillarr@spock.ucm.cl
mailto:eduardo.fdezmedina@uclm.es
mailto:mario.piattini@uclm.es
http://www.elsevier.com/locate/cose

Secure information systems development

309

ideologies, or sexual tendencies. In this case,
confidentiality is redefined as privacy. At present,
ensuring appropriate information privacy is a press-
ing concern for many companies, since there is
a privacy legislation such as the United States’
HIPAA (Health Insurance Portability and Account-
ability Act) (Federal Trade Commission, 1996) that
regulates the privacy of personal health care
information, Gramm-Leach-Bliley Act (also known
as the Financial Modernization Act), Sarbanes—
Oxley Act, and the EUs Safe Harbour Law.
Confidentiality should be taken into account in
every information systems (ISs) development, be-
cause of the fact that the very survival of the
organization depends on the correct management,
security and confidentiality of information (Dhil-
lon, 2001). However, ISs security is considered in
the industry once the system is developed. This
approach is known as ‘‘Penetrate and Patch”
(McGraw, 2002), and it has been proved to have
bad results. It is less common that developers take
this aspect into consideration in earlier stages such
as analysis and design. Solutions are mainly focused
on providing security defences (such as firewalls,
routers, configuration server, password and
encryption) instead of solving one of the main
reasons of security problems that refers to an
appropriate software design (Ghosh et al., 2002).
In simple economic terms, to find and eliminate
mistakes in a software system before it is finished is
cheaper and more effective than to try to correct
systems after having been finished (Brooks, 1995).
Several papers deal with the importance of
security in the software development process.
Ghosh et al. (2002) state that security must
influence all aspects of design, implementation
and software testing. Hall and Chapman (2002) put
forward ideas about how to build correct systems
that fulfil not only the normal requirements but
also the security ones. These ideas are based on
the use of several formal techniques of require-
ment representation and a strong correction anal-
ysis of each stage. As a result of technological
changes, such as access to databases via web,
development of electronic commerce, advances in
data warehouses and even the use of data mining
techniques (Thuraisingham et al., 1998), data
security problems have increased. This fact justi-
fies the use of methodologies incorporating secu-
rity into the stages of ISs development.
Fortunately, we have identified eleven method-
ologies that incorporate security into their
development process (Artelsmair et al., 2002;
Fernandez, 2004; Fernandez-Medina and Piattini,
2003; Fernandez-Medina et al., 2004; Georg et al.,
2002; Jiirjens, 2002; Liu et al., 2003; Marks et al.,

1996; Priebe and Pernul, 2000; Siponen, 2002;
Vivas et al., 2003). Each one of these methodolo-
gies comprises very important aspects concerning
security that can be used as a basis for the
improvement of the current methodologies. At
the same time, these methodologies have a series
of limitations that must be taken into account.
This fact, unfortunately, indicates that there are
no consolidated methodologies that integrate
security into the development process yet.

The rest of the paper is organized as follows: In
next section, we will shortly describe each one of
the eleven proposals that incorporate security into
the stages of systems development; then, we will
show the comparison framework that we have
used. Further, we will make the comparison, and
finally, in the last section, we will explain our
conclusions.

Proposal of methodologies
incorporating security

The proposals that will be analysed in our compar-
ison are listed below.

e MOMT: Multilevel Object Modeling Technique,
by Marks et al. (1996)

e Business process-driven framework for security
engineering, by Vivas et al. (2003)

e UMLSec: Secure Systems Development Method-
ology using UML, by Jiirgens (2002)

e Secure Database Design Methodology, by
Fernandez-Medina and Piattini (2003)

e Security and Privacy Requirements Analysis
Methodology within a Social Setting, by Liu
et al. (2003)

e A Paradigm for Adding Security into IS De-
velopment Methods, by Siponen (2002)

e CoSMo: An Approach Towards Conceptual Se-
curity Modeling, by Artelsmair et al. (2002)

e Using Aspects to Design a Secure system, by
Georg et al. (2002)

e A Methodology for Secure Software Design, by
Fernandez (2004)

e ADAPTed UML: A Pragmatic Approach to Con-
ceptual Modeling of OLAP Security, by Priebe
and Pernul (2001)

e A UML Extension for Secure Multidimensional
Conceptual Modeling, by Fernandez-Medina
et al. (2004)

We have chosen these eleven methodologies
because the majority of them try to solve the
problem of security (mainly confidentiality) from
the earliest stages of the ISs development,

310

R. Villarroel et al.

emphasize security modeling aspects and use
modeling languages that make it the easier secu-
rity design process.

MOMT: Multilevel Object Modeling
Technique

Marks et al. (1996) define MOMT (Multilevel Object
Modeling Technique) as a methodology to develop
secure databases by extending OMT in order to be
able to design multilevel databases providing the
elements with a security level and establishing
interaction rules among the elements of the
model. Although MOMT is mainly composed of
three stages, authors only describe the essential
points of its analysis stage. These stages are
described below.

e Analysis stage: it allows us to analyse the
requirements to detect potential system vul-
nerabilities. This stage consists of three models
whose aim is to collect system information
from several perspectives: multilevel object
model (to represent static features), multilevel
dynamic model (to represent dynamic fea-
tures) and multilevel functional model (to
represent system transformation features).

e System design stage: it allows us to design
multilevel databases. To do so, it defines, at
a high level, systems structure and multilevel
databases.

e Object design stage: it allows us to design the
modules of the automated system in a more
detailed way.

Business process-driven framework
for security engineering

Vivas et al. (2003) propose a business process-
driven system development method where tech-
nology decisions are guided by the business model.
Expressing security requirements at the business
model level is motivated by the fact that applica-
tions like e-commerce transactions are conceptu-
ally similar to traditional non-automated business
transactions. Notions such as non-repudiation,
confidentiality, integrity, access control and au-
thentication have played a role in business trans-
actions long before the appearance of automated
systems.

This framework is based on the UML and
integrates security requirements into a business
process model of the system. The UML is extended
in order to express security notions. With the aim

of facilitating its adoption by system developers,
the framework intends to integrate security re-
quirements into standard system development
methodologies which, currently, are often UML-
based and use case-driven.

Use cases and the corresponding scenarios are
used as the basic tools to build threat models and
elicit security requirements. The latter are origi-
nally stated at the high level of abstraction within
a functional representation of the system, thus
yielding a security-enriched specification. There-
after, a machine readable XMI-representation of
the system is produced and security requirements
are integrated into the functional description by
means of the pattern-based analysis and design
process yielding a new specification of the system
which the security requirements have been in-
tegrated into. The resulting representation is
translated into a formal notation for testing,
validation and verification. This procedure is iter-
ated as many times as required. The result is used
as an input to the following stages of system
development.

UMLSec: Secure Systems Development
Methodology using UML

Jiirgens (2002) states a methodology to specify
requirements regarding confidentiality and integ-
rity in analysis models based on UML. Multilevel
security and mandatory access control are the
security models highlighted in this proposal. This
approach considers a UML extension to develop
secure systems. In order to analyse security of
a subsystem specification, the behaviour of the
potential attacker is modeled; hence, specific
types of attackers, that can attack different parts
of the system in a specific way, are modeled. This
proposal uses the majority of UML diagrams to
model security aspects, mainly those referred to
confidentiality and integrity, for example, state
chart diagrams model, the dynamic behaviour of
objects, and sequence diagrams are used to model
protocols. Deployment diagrams are also used to
model links among components across servers.
Besides, this methodology incorporates the trans-
lation of UMLSec models defined for the introduc-
tion of patterns into the design process.

Secure Databases Design Methodology

Fernandez-Medina and Piattini (2003) propose
a methodology to design multilevel databases by
integrating security into each one of the stages of
the databases life cycle.

Secure information systems development

311

This methodology includes the following aspects:

e A specification language of multilevel security
constraints about the conceptual and logical
models.

e A technique to the early gathering of multilevel
security requirements.

e A technique to represent multilevel databases
conceptual models.

e A logical model to specify the different
multilevel relationships, the metainformation
of databases and constraints.

e A methodology based upon the Unified Process
(Jacobson et al., 1999) with different stages
that allow us to design multilevel databases.

e A CASE tool that helps us to automate multi-
level databases analysis and design process.

Security and Privacy Requirements Analysis
Methodology within a Social Setting

In Liu et al. (2003), it is stated that a methodolog-
ical framework to deal with security and privacy
requirements based on i*, which is an agent-
oriented requirements modeling language.

This framework is formed by a set of analysis
techniques as follows:

e Attacker analysis: it helps us to identify system
potential attackers and their malicious intents.

e Dependency vulnerability analysis: it helps us
to detect vulnerabilities in terms of organiza-
tional relationships among stakeholders.

e Countermeasure analysis: the necessary fac-
tors for a successful attack are the attacker
motivation, the system vulnerabilities and the
attackers’ capabilities to carry out the attack.

e Access control analysis: it establishes a link
between security requirements models and
security implementation models. To do so, it
uses i* models to polish a proposed solution and
to generate a system design.

The concepts provided by i* language enable us
to analyse security aspects within their social
settings, giving place to a systematic way to find
vulnerabilities and threats.

A Paradigm for Adding Security into
IS Development Methods

Rather than presenting another security approach
with its own novel security features Siponen
(2002), proposes a new paradigm for secure IS
which will help developers to use and modify their
existing methods as needed. The meta-method

level of abstraction offers us a perspective of
secure IS development that is in a constant state
of emergence and change. Furthermore, develop-
ers recognize regularities or patterns in the way
that problem settings arise and methods emerge.

The author uses the following analytical process
for discovering the patterns of security design
elements. In the first place, he looked across IS
software development and IS security develop-
ment methodologies in order to find common core
concepts (subjects and objects). Secondly, he
surfaced patterns in existing secure IS methods
giving place to four additional concepts (security
constraints, security classifications, abuse subjects
and abuse scenarios, and security policy). Finally,
he consulted a panel of practitioners for comments
about these patterns. This process led to a pattern
formed by six elements. Additional elements can
be certainly added to the meta-notation on an ad
hoc basis as required. To summarize, the
meta-notation includes six dimensions: security
subjects, security objects, security constraints,
security classifications, abuse scenarios, and secu-
rity policy. Security subjects denote the different
security relevant entities, i.e., entities that have
a relevant security connection to the assets of the
organization (security objects). The term security
objects refers to the assets of the organization
that are relevant in terms of information security.
These assets (security objects) may range from
physical things such as paper to electronic entities
such as files. Security constraints may include
write access, read access, etc., and they may be
discovered by analysing the security requirements
(confidentiality, integrity, availability and non-
repudiation) for each security object. Security
classification stems from the need to classify
security objects and subjects according to their
information security sensitivity. Abuse subjects form
aspecial class of security subjects and refer to those
subjects that may carry out a security violation.
Abuse subjects and abuse scenarios may be needed
for two kinds of situations. Firstly, they may comein
handy when there is a need to explore and identify
what potential threat scenarios exist. Secondly, this
class is relevant for testing purposes since it helps us
to check that the system and software under design
can cope with unwanted scenarios or attacks by
unauthorized people or processes.

CoSMo: An Approach Towards Conceptual
Security Modeling

In Artelsmair et al. (2002), the need to integrate
security considerations into the software modeling

312

R. Villarroel et al.

process is identified. Conceptual modeling should
have to encompass security requirements and
high-level security mechanisms. Authors work on
the development of a conceptual security model-
ing method that they refer to as CoSMo (Concep-
tual Security Modeling).

Prior to an overview of which security mecha-
nisms can enforce which requirements, fundamen-
tal issues of security policies are elaborated. A
security policy consists of a set of laws, rules and
practices that regulate how an organization man-
ages, protects and distributes sensitive informa-
tion. Each security requirement can be enforced
by one or more security mechanisms, resulting in
a requirements/mechanisms matrix. The security
requirements and mechanisms are generically de-
fined, since they are used for security modeling at
the conceptual level.

First of all, authors show how security consid-
erations can be integrated into the conceptual
modeling process. Next, they systematically enu-
merate frequently encountered security require-
ments and clearly indicate which mechanisms are
used to enforce them.

Generally, a claimed security requirement is not
part of the use case diagram but is part of the
description of the use case. In CoSMo, it will be
possible to model this security requirement at the
conceptual level, even in a use case diagram.

Using Aspects to Design a Secure System

In Georg et al. (2002), authors focus on the use of
aspects for modeling and weaving in security
concerns. They propose an aspect-oriented design
(AOD) technique for designing a secure system. An
aspect-oriented design consists of a primary model
and one or more aspects that capture design
concerns that crosscut the design units of the
primary model. Incorporating these aspects into
the primary model is called weaving. Weaving
results in a model in which the design units
impacted by the concern represented by the
aspects are accordingly modified. In this work,
aspects are treated as design patterns.

An aspect is defined in terms of structures of
roles called Role Models. Role Models are used
because they allow us to express aspects as
patterns. Aspect properties are defined in terms
of roles that can be played by model elements
representing application-specific concepts. Model
elements are UML constructs. The way in which
multiple aspects are woven into a primary model is
determined by weaving strategies. A weaving
strategy identifies security aspects taking into
consideration the kinds of attacks that are possible

in a system and the mechanisms that can be used
to detect, prevent, and recover from such attacks.
A design aspect (e.g., a security concern) can be
modeled from a variety of perspectives. Authors
focus on two aspect views: static and interaction
views. A static view of an aspect defines the
structural properties of the aspect. The interaction
view specifies the interaction patterns associated
with the aspect. In this proposal, authors use
specialized forms of two Role Model types to model
aspects from these views: Static Role Models (SRMs)
and Interaction Role Models (IRMs). SRMs define
patterns of UML static structural models (e.g. Class
Diagram patterns) while IRMs define UML interac-
tion diagram patterns (e.g. Collaboration Diagram
pattern). An aspect definition typically consists of
a single SRM and one or more IRMs.

A Methodology for Secure Software Design

The main idea of the methodology proposed in
Fernandez (2004) is that security principles should
be applied at every development stage and that
each stage can be tested for compliance with
those principles. The secure software lifecycle is
as follows.

e Requirements stage: from the use cases, we
can determine the rights needed by each actor
and thus, apply a need-to-know policy. Since
actors may correspond to roles, this is now
a Role-Based Access Control (RBAC) model. The
set of all use cases defines all the uses of the
system and from all the use cases; we can
determine all the rights for each role. We can
then consider possible attacks in the context of
these use cases.

e Analysis stage: we can build a conceptual
model where repeated applications of the
authorization patterns realize the rights de-
termined by use cases. Analysis patterns can be
built with predefined authorizations according
to the roles in their use cases. This fact makes
the job of defining rights even easier.

e Design stage: interfaces can be secured by
applying again the authorization pattern. The
user interfaces should correspond to use cases.
Secure interfaces enforce authorizations when
users interact with the system. Deployment
diagrams can define secure configurations to be
used by security administrators. A multilayer
architecture is now needed to enforce the
security constraints defined at the application
level. At each level, patterns are used to
represent appropriate security mechanisms.

Secure information systems development

313

e Implementation stage: this stage requires
reflecting in the code the security constraints
defined for the application. Since these con-
straints are expressed as clauses and associa-
tions, they can be implemented as functional
classes.

At the end of each stage, we can perform audits
to verify that institution policies are being fol-
lowed. If necessary, the security constraints can
be made more precise by using Object Constraint
Language (OCL) instead of textual constraints.
Using layers, we can define patterns at all levels
that altogether implement a secure or reliable
system. The main idea of the Layers pattern is the
decomposition of a system into hierarchical layers
of abstraction, where the higher levels use the
services of the lower levels.

ADAPTed UML: A Pragmatic Approach to
Conceptual Modeling of OLAP Security

A methodology and language for conceptual mod-
eling of OLAP security is presented in Priebe and
Pernul (2001), by creating a UML-based notation
named ‘“ADAPTed UML” (which uses ADAPT sym-
bols as stereotypes). Authors chose ADAPT because
it is mentioned at different ORACLE Express user
group conferences, and this notation is one of the
few exceptions which does not use an intuitive ER
like notation in conceptual modeling. The concep-
tual (meta) model that has been developed for
conceptual OLAP models introduces the elements
cube, measure, dimension level, and dimension
attribute.

As part of the logical design, the system-in-
dependent conceptual model is transformed into
a logical (system-dependent) ‘“‘implementation
model”’. Restrictions of the chosen system (i.e.
DBMS or OLAP software) have to be taken into
account. Authors use a logical OLAP model that is
based on the Microsoft Analysis Services (shipped
with SQL Server 2000).

The security model for OLAP is based on the
assumption of a central (administrator based)
security policy. The access restrictions are defined
as authorization constraints making the identifica-
tion of security objects and subjects necessary. At
this point, they assume the notion of (non-
overlapping, non-hierarchical) roles as security
subjects. Therefore, in addition to the above-
mentioned elements (cubes, dimensions, etc.)
the element role is introduced. authorization
constraints can be either positive (explicit grants)

or negative (explicit denials). The security model
is based on an open world policy (i.e. access to
data is allowed unless it is explicitly denied) with
negative authorization constraints. This fact cor-
responds to the open nature of OLAP systems.

Authors state a multidimensional security con-
straint language (MDSCL) that is based on MDX
representation of the logical OLAP model used by
Microsoft. In order to express the (negative)
authorization constraints, they propose a set of
HIDE statements. For example: HIDE CUBE, HIDE
MEASURE, HIDE SLICE, HIDE LEVEL, HIDE LEVEL
WHERE, HIDE MEASURE WHERE.

A UML Extension for Secure
Multidimensional Conceptual Modeling

An extension of the UML that allows us to repre-
sent the main security information of data and
their constraints in the multidimensional (MD)
modeling at the conceptual level is presented in
Fernandez-Medina et al. (2004). The proposed
extension is a UML profile that allows us to
consider the main MD modeling properties and it
is based on the UML (designers can avoid learning
a new specific notation or language). The authors
of this methodology consider the multilevel secu-
rity model, but they focus on taking into consid-
eration aspects regarding read operations because
this is the most common operation for final user
application. This model allows us to classify both
information and user into security classes, and
enforce the mandatory access control. By using
this approach, we make it possible to implement
secure MD models with any of the DBMS that are
able to implement multilevel databases, such as
Oracle Label Security (Levinger, 2002) and DB2
Universal Database (UDB) (IBM, 2004). An exten-
sion to the UML begins with a brief description and
then lists and describes all of the stereotypes,
tagged values, and constraints of the extension. In
addition to these elements, an extension contains
a set of well-formedness rules. These rules are
used to determine whether a model is semantically
consistent with itself. According to this fact,
authors define a UML extension for secure concep-
tual MD modeling following a schema composed of
these elements: description (a little description of
the extension in natural language), prerequisite
extensions (it indicates whether the current ex-
tension needs the existence of previous exten-
sions), stereotypes/tagged values (the definition
of the stereotypes and/or tagged values), well-
formedness rules (the static semantics of the

314

R. Villarroel et al.

metaclasses are defined both in natural language
and as a set of invariants expressed by means of
OCL expressions), and comments (any additional
comment, decision or example, usually written in
natural language). For the definition of the stereo-
types, authors follow a structure composed of
a name, the base metaclass, the description, the
tagged values and a list of constraints defined by
means of OCL. For the definition of tagged values,
the type of tagged values, the multiplicity, the
description, and the default value are expressed.

Comparison framework

We have used the comparison framework proposed
by Khwaja and Urban (2002). We have chosen this
framework since it establishes a clear differentia-
tion between the concepts of specification and
specification techniques. There are other compar-
ison frameworks but this is one of the most recent
and it solves the problem that many authors
intermingle the concepts of specification and
specification technique. The criteria used for one
of these concepts should not be applied to the
other, since it can influence the establishment/
adaptation and suitable use of a methodology that
considers information security aspects. For
instance, a specification can be complete and
consistent regardless of the way used to represent
it, the process used in its construction, the
degree/extent of tools and automation used or
whether it is formal or informal. However, it is
significant to indicate that a technique can be used
to produce consistent or complete specifications.
The criteria should be separated but there should
exist a mapping between them, which means that
the specification technique features help us to
achieve certain features in a specification.

In the context of software engineering, specifi-
cation is a description of externally known fea-
tures, a complete behaviour, in other words,
input/output, description of several systems inter-
faces, etc. The concept of specification is, thus,
a precise sentence of the requirements that
a system must satisfy. A software specification
technique is a method to achieve the desired
purpose or product.

The fulfilment of a technical criterion should
carry out the fulfilment of the specification crite-
ria related to that technical criterion as well. For
example, if the technical criterion is the formality
level, then, a high level of formality in a specifica-
tion technique can help us to achieve a precise,
unambiguous, consistent, complete definition and
verifiable specifications.

The specification criteria, with their terms and
phrases that describe the same criterion, are the
following: understandable (a system specification
must be a cognitive model, comprehensibility),
appropriate (separate functionality from imple-
mentation), unambiguous (precision, lack of am-
biguity), complete, consistent, correct, verifiable
(analysability), validateable (testability), modifi-
able (maintainability, adaptability), traceable,
minimal (economy of expression).

The specification technique criteria and their
meanings are as follows:

e Expressive adequacy: technique supports con-

ciseness of representation. The expressive

capability of a technique may enhance speci-
fication comprehensibility, appropriateness,
and minimality.

Constructibility: it refers to the ease of

construction of a specification using the

technique.

Scope of specifications: scope deals with both

functional and performance specifications. In-

deed, a specification for a system should
consist of functional as well as non-functional
requirements specifications.

Level of formality: high level of formality in

a specification technique may help us to define

precise, unambiguous, consistent, complete,

and verifiable specifications.

Formal foundation: high formal foundation in

a specification technique may help us to define

precise, unambiguous, consistent, complete,

and verifiable specifications.

e Extent of applicability: it deals with the
range of domains that can be specified by
a technique.

e Easy to use: it deals with the ease that
a technique may be used with, without much
knowledge or special training.
Help support: it deals with aspects such as the
procedures, guidelines, standards, and case
studies available for a technique. This criterion
may help us to use a technique and construct
specifications within the technique.
e Integrated environment and tool support: it
deals with the tools available in an integrated
fashion for a technique. This criterion may help
us to use a technique, construct specifications
within a technique, and make an automatic
analysis of specifications.

Specification organizational support: technique

supports good organizational principles to

control complexity. Good specification organi-
zation helps us to control complexity and
enhance understandability.

Secure information systems development

315

e Support for maintainability: the technique
should facilitate specification modifications.
Maintainable specifications are easily modifi-
able and traceable.

e Executable: a specification must be operational.
An operational model of specifications may help
us to increase understandability, reduce ambi-
guity, improve consistency, ensure complete-
ness and correctness, and make specifications
more verifiable and validateable.

e Tolerance for incompleteness: the system spec-
ification must be tolerant of incompleteness
and augmentable. Execution of incomplete
specifications may help testability at several
stages of the specification development.

e Multiple views: proper use of a technique
should enhance understandability for non-
computer specialists. Multiple views of a spec-
ification may enhance its understandability.

e Notational simplicity and flexibility: technique
supports conceptual clarity to the client. It
may improve specification understandability.

e Internal verification support: a technique
should provide means for specification consis-
tency checks. Automatic internal verification
supported by a technique may improve the
reduction of ambiguity, ensure completeness,
improve consistency, and hence, make specifi-
cations more verifiable.

e External validation support: it may ensure cor-
rectness of a specification by validating it against
requirements and/or implementation. This cri-
terion may also improve validation by generating
test cases and using the same test for specifica-
tion, as well as the implementation validation.

e Support for other development stages: auto-
matic design and implementation generation
from specification may improve traceability
across the development stages.

e Support for documentation generation:
automatic documentation generation from
specifications may help us to increase un-
derstandability of specifications.

Comparison

Table 1 allows us to relate specification and
specification technique criteria. We can see, for
instance, that the fulfilment of a technical crite-
rion must generate the fulfilment of all specifica-
tion criteria related to that criterion. The
fulfilment of a specification criterion (for example,
unambiguous) can partially help to achieve the
fulfilment of several technical criteria such as the
level of formality, formal foundation, maintain-

ability and internal verification support. The
degree of fulfilment will be “X” for Yes, ** "’ for
No and *“(x)” for Partial. As each specification
technical criterion can be associated to one or
more specification criteria, the answer of each
methodology will be related to the technical
fulfilment with respect to a specification criterion.
For example, we can look up if there is an
““expressive adequacy” that allows an ‘‘under-
standable” specification. To know if this criterion
is completely fulfilled, the specification must be
““understandable”’, ‘‘appropriate’ and ““minimal’’.

All the above-proposed ideas are very interest-
ing and provide us with important contributions to
solve the security problem in a methodological
way. We can conclude that, at a general level, all
of them fulfil the criteria associated to formal
aspects; they are serious proposals, very well
based and supported by a modeling language. The
deficiency is observed in the automated support
that each one of these methodologies needs;
specifically, it can be mentioned as the lack of an
automatic instrument of internal verification.
Moreover, each proposal has several weaknesses.

The multilevel databases design methodology
called MOMT only explains the analysis stage; it
does not propose valid solutions for current sit-
uations in which used technologies and security
needs have changed, as we can see in the speci-
fication criterion ‘‘appropriate”.

The proposal made by Vivas et al. is an ongoing
work intended to establish a use case-driven soft-
ware development framework based on the UML, as
well as to integrate security requirements into
a business process model of the system. The pro-
posal is tentative and exploratory, but it is focused
on a discussion and identification of the problems
rather than on providing solutions. This fact can be
seen in the partial fulfilment of most of the criteria.

The proposal made by Liu et al. is mainly
associated to the security requirement analysis
process from a top-down or bottom-up perspec-
tive. Moreover, the used techniques allow us to
check the model and can be applied in several
stages of the requirements process. The weakness
of this methodology is the fact that it mentions
neither the database processing nor the remaining
stages of the information systems development. In
addition to this, it does not consider tools that
support the kind of reasoning regarding security.
This fact can be visualized in the nonfulfilment of
most of the necessary supports, except for the
external validation support, where goal-reasoning
techniques such as qualitative goal labeling algo-
rithms and quantitative techniques can be used to
identify the best design solutions.

Table 1 Comparison using evaluation criteria for software specifications and specification techniques

9l€

Technique Specification Methodologies
criterion criteria Marks Vivas Jiirjens Fernandez- Liu Siponen Artelsmair Georg Fernandez Priebe Fernandez-
et al. et al. (2002) Medina and et al. (2002) et al. et al. (2004) and Pernul Medina
(1996) (2003) Piattini (2003) (2002) (2002) (2001) et al.
(2003) (2004)
Expressive Understandable X X X X X X X X X X X
adequacy Appropriate (x) X (x) X (x) X X X X X X
Minimal X X X X (x) (x) X X X X X
Constructibility = X X X (x) (x) (x) (x) (x) X X
Scope of Complete (x) X (x) (x) (x) (x) (x) (x) X
specifications
Level of Unambiguous X (x) X X X (x) (x) X (x) X X
formality Consistent X (x) X X X (x) (x) X (x) X X
Complete X (x) X (x) X (x) (x) X (x) X X
Verifiable X (x) X X X (x) (x) X (x) X X
Validateable X (x) X X X (x) (x) X (x) X X
Formal Unambiguous X (x) X X X X X X X X X
foundation Consistent X X X X X X X X X X X
Complete X (x) X (x) X X X X X X X
Verifiable X X X X X X X X X X X
Validateable X X X X X X X X X X X
Extent of = (x) X (x) X (x) X X X X X X
applicability
Easy to use = X X (x) X (x) (x) (x) X X
Help support - (x) (x) (x) (%) (x) (x)
Integrated — (x) (x) (x)
environment
and tool support
Specification Understandable X (x) X X X (x) (x) (x)
organization Modifiable X X X X X (x) (x) (x)
support
Support for Modifiable X (x) X X X
maintainability Traceable (x) (x) X (x) X
Executable Understandable (x) (x) X (x) (x) (x)
Unambiguous (x) (x) X X (x) (x)
Consistent (x) (x) X X (x) (x)
Complete (x) (x) (x) (x) (x) (x)
Correct (x) (x) X X (x) (x)
Verifiable (x) (x) X X (x) (x) (x)
Validateable (x) (x) X (x) (x) (x) (x)

|e 19 J20.IeIA Y

Secure information systems development

317

(x)
(x)
(x)
(x)

X
X

Verifiable

Tolerance for

(x)

incompleteness Validateable

Multiple views

(x)

Understandable X

Understandable X

Flexibility and

notational
simplicity

Internal

Unambiguous
Complete

verification
support

Consistent
Verifiable
Correct

External

(x)

Validateable

validation

support
Support for other

(x)

Traceable

development

stages
Support for

(x)

(x)

Understandable (x)

documentation
generation

UMLSec security proposal takes into account
security requirements related to confidentiality
and integrity aspects. However, it does not com-
prise aspects associated to databases security
design. As this methodology tries to make a broad-
er study, it does not consider secure databases
design according to conceptual, logical and phys-
ical aspects, which is essential in systems security.

The proposal stated by Fernandez-Medina and
Piattini only studies use cases diagrams, class
diagrams and OCL (Object Constraint Language)
to model security. This proposal offers us an
extension of involved languages and techniques
to comprise confidentiality aspects in databases.
Nevertheless, this methodology is not adequate
for developing secure ISs.

The proposal made by Siponen is a meta-
notation (six dimensions) which ensures that secu-
rity issues are properly and easily addressed in IS
secure design. According to the author, this pro-
posal satisfies the requirements of autonomy
better than any existing approach for designing
secure IS/software. Practitioners can continue to
use their favoured IS secure design methods as
a basis for the development and management of
secure IS. Our critic is associated to a deficiency of
the graphical models and languages used to sup-
port this proposal or to provide it with greater
formality. The proposal will be successful depend-
ing on the ability of the user who must incorporate
elements of security into the methodologies that
are being used in a given moment because this
proposal, in spite of being very interesting, is dealt
with in a very general way. Furthermore, doubts
can be casted upon the applicability of the idea of
the meta-notation in the different IS development
methods.

The proposal called CoSMo will provide us with
a method for conceptual modeling of secure
systems on the basis of the UML, but it has been
developed partially; it does not exist either as
a definition of a formal notation based on the UML
or as an integration of it into existing toolkits.

The proposal made by Georg et al. differs from
the others in the fact that the focus is not on
extending modeling notations such as the UML but
on how security concerns can be first encapsulated
and then woven into primary design models. By
supporting the separation of concerns during the
design stage, the complexity of designing large
systems can be better managed. This work can
also take advantage of UML security extensions:
the weaving process can be designed to pro-
duce extended forms of the UML that reflect
the properties expressed in the aspects in a
more direct way. Authors have not developed

318

R. Villarroel et al.

a prototype tool that will support flexible weaving,
by providing users with a language for describing
reusable weaving strategies and weaving proce-
dures.

The proposal made by Fernandez states that
the combination of multilayer architectures with
patterns provides us with a framework to develop
a systematic and reusable approach to build
systems that satisfy specific non-functional re-
quirements, but it is necessary to work on this
subject to add more patterns at each level and to
collect and unify these patterns. Also, our critic is
associated to a deficiency of the graphical models
and languages used to support this proposal or to
provide it with greater formality.

The proposal made by Priebe and Pernul is
interesting but they have limited their model to
very simple security subjects (non-hierarchical,
non-overlapping roles). Role-based access control
models usually provide us with the possibility of
role hierarchies. A role hierarchy is interpreted in
such a way that authorizations or constraints of
a superior role are inherited by subordinate roles.
Additionally, due to the difficulty of keeping the
constraint set consistent, they have limited their
security model to negative authorizations. In
principle, a combination of negative and positive
authorizations would be possible (i.e. HIDE and
SHOW statements). Nevertheless, a combination
with role hierarchies would make a conflict reso-
lution strategy even more difficult.

The proposal made by Fernandez-Medina et al.,
in spite of being very interesting and solid in terms
of conceptual modeling, has deficiencies associated
to the remaining stages of the development pro-
cess. In addition, it does not have, until the
moment, an automatic support that allows us to
work with it, for example, the implementation of
a CASE tool based on UML incorporated into the
multidimensional modeling.

Table 2, shows a synthesis of the contributions,
in security terms, made by each one of the
analysed methodologies.

It is very difficult to develop a methodology
that fulfils all criteria and comprises all security
constraints in terms of confidentiality, integrity
and availability. If that methodology was devel-
oped, its complexity would avoid its success.
Therefore, the solution would be a more complete
approach in which techniques and models defined
by the most accepted model standards were used.
And, if these techniques and models could not be
directly applied, they must be extended by
integrating the necessary security aspects that,
at present, are not covered by the analysed
methodologies.

Conclusions

The criticality of IS, and especially databases and
data warehouses for modern business, together
with the new requirements of laws and govern-
ments, make it necessary the development of
more sophisticated approaches to ensure data
security. Traditionally, information security deals
with different research topics, like access
control techniques, cryptographic methods, etc.
Although all these topics are very important, we
think that it is fundamental to use a methodolog-
ical approach, where security (at different levels)
is taken into consideration at all stages of the
systems development process. There are several
interesting methodological proposals, but some of
them propose different notations for modeling
security aspects of IS, databases and data ware-
houses development. Hence, we propose that
a standardised methodological approach that
allows us to build IS taking into account security
aspects from the earliest stages of development
until the end of the process should be developed.
This methodological approach should be an
extension of existing modeling methodologies and
standards because, otherwise, organizations that
are really interested in DW security would have to
make a big effort to adapt to the new technology.

The most widely spread modeling standard is
UML. Therefore, it would be interesting to obtain
a consensus to standardise the different method-
ologies to specify a security profile for UML. In this
way, it would be possible to provide UML with
security features to be able to develop modeling
including, on the one hand, the UML syntax and
power and on the other hand, the new security
features, ready to be used, when the application
includes the security requirements needed by
these features. UML has been widely accepted as
the standard object-oriented modeling language
to model several aspects of software systems.
Hence, any approach using UML will minimize the
effort of developers to learn new notations or
methodologies for each subsystem to be modeled.
UML is an extending language since it provides
mechanisms (stereotypes, tagged values and con-
straints) in specific domains, if necessary, such as
web applications, business modeling, software
development processes and so on. We consider it
appropriate to use a design methodology that uses
a UML profile for security aspects to be added.
Moreover, we think that it is essential to use
an OCL (Object Constraint Language) based lan-
guage to be able to specify security restrictions
precisely together with other UML diagrams and

Table 2 Summary of the contributions, in security terms, made by each one of the analysed methodologies

Modeling/development Technologies Access Constraints Case tool support
standard control type specification
MOMT OMT Databases MAC NO NO
Vivas UML Information systems — NO YES
(only requirements, (ConGolog, a concurrent
business process-driven) logic programming based
on the situation calculus)
UMLSec UML patterns Information systems MAC (multilevel) NO, but work

Fernandez-Medina
and Piattini
Liu and Yu

Siponen

CoSMo

George et al.

Fernandez

ADAPTed UML
Fernandez-Medina
et al.

UML, unified process

Agent-oriented
requirement
modeling language (i*)

UML

UML, aspect-oriented
patterns

UML patterns

ADAPT UML
UML

Databases

Information systems
(only requirements)

Information systems,
meta-methodology
Information systems
(only requirements)
Information systems
(only design)

Information systems

OLAP
Data warehouses

MAC, DAC, RBAC,
Constraint-based
RBAC

RBAC

Access matrix RBAC

RBAC
MAC, DAC, RBAC,
constraint-based

OSCL (OCL based)

A lightweight
object modeling
notation alloy
NO

They do not show

the meta-model constraints

in OCL, the constraints
are expressed in template
form

He refers

to OCL as a good solution
MDSCL (MDX based)

OSCL (OCL based)

towards this goal

is being undertaken

by giving translations
from UML into CSP which
allow us to use the model
checker FDR2 to check
security properties

YES

(Rational Rose add-in)
YES (alloy)

NO

NO

NO

NO

NO
NO

JUSLUdO]aAap SWIOISAS uoljewojul 21ndag

6L€

320

R. Villarroel et al.

the development of a CASE tool (integrated, for
example, into Rational Rose) to support the sys-
tems design process in a secure way for the later
validation of the proposal by applying it to real
situations. The biggest cost of software system is
the maintenance and this is a consequence of
imprecise, incomplete and arbitrary documenta-
tion. With a UML profile that allows us to model IS
security requirements; a more robust specification
will be achieved.

Acknowledgements

This research is part of the CALIPO (TIC2003-
07804-C05-03) and RETISTIC (TIC2002-12487-E)
projects, supported by the Direccion General de
Investigacion of the Ministerio de Ciencia y Tecno-
logia, and the network VII-J.RITOS2 financed by
CYTED.

References

Artelsmair C, Essmayr W, Lang P, Wagner R, Weippl E. CoSMo: an
approach towards conceptual security modeling. In: Data-
base and expert systems applications: 13th international
conference (DEXA 2002). Air-en-Provence, France: Springer-
Verlag; 2002.

Brooks F. The mythical man month: essays on software
engineering. Addison-Wesley; 1995.

Castano S, Fugini M, Martella G, Samarati P. Database security.
Addison-Wesley; 1995.

Dhillon G. Information security management: global challenges
in the new millennium. Idea Group Publishing; 2001.

Federal Trade Commission (U.S.). Health Insurance Portability
and Accountability Act (HIPPA); 1996.

Fernandez EB. A methodology for secure software design. In:
The 2004 international conference on software engineering
research and practice (SERP’04). Las Vegas, Nevada, USA;
2004.

Fernandez-Medina E, Piattini M. Designing secure database for
OLS. In: Database and expert systems applications: 14th
international conference (DEXA 2003). Prague, Czech
Republic: Springer; 2003.

Fernandez-Medina E, Trujillo J, Villarroel R, Piattini M. Extend-
ing the UML for designing secure data warehouses. In: 23rd
international conference on conceptual modeling ER2004.
Shanghai, China: Springer-Verlag; 2004.

Georg G, Ray I, France R. Using aspects to design a secure
system. In: Eighth IEEE international conference on
engineering of complex computer systems (ICECCS’02).
Greenbelt, Maryland, USA; 2002.

Ghosh A, Howell C, Whittaker J. Building software securely from
the ground up. IEEE Software 2002;19(1):14—6.

Hall A, Chapman R. Correctness by construction: developing
a commercial secure system. IEEE Software 2002;19(1):
18—25.

IBM. Security: IBM to provide multilevel security on the zSeries
mainframe; 2004.

ISO/IEC. ISO/IEC 15408-1. Information technology. Security
techniques. Evaluation criteria for TI security. Part I:
introduction and general model. Switzerland; 1999.

Jacobson I, Booch G, Rumbaugh J. The unified software
development process. Addison Wesley; 1999.

Jirjens J. UMLsec: extending UML for secure systems
development. In: Jézéquel J, Hussmann H, Cook S, editors.
UML 2002 — the unified modeling language, model engi-
neering, concepts and tools. Dresden, Germany: Springer;
2002:412-25.

Khwaja A, Urban J. A synthesis of evaluation criteria for
software specifications and specification techniques.
International Journal of Software Engineering and Knowl-
edge Engineering 2002;12(5):581—-99.

Levinger J. Oracle label security. Administrator’s guide. Release 2
(9.2). Available from: <http://www.csis.gvsu.edu/General
Info/Oracle/network.920/a96578.pdf >; 2002.

Liu L, Yu E, Mylopoulos J. Security and privacy requirements
analysis within a social setting. In: 11th International
requirements engineering conference. I|EEE Computer
Society; 2003.

Marks D, Sell P, Thuraisingham B. MOMT: a multi-level object
modeling technique for designing secure database applica-
tions. Journal of Object-Oriented Programming 1996;9(4):
22-9.

McGraw G. Penetrate and patch is bad. IEEE Software 2002;
15.

Priebe T, Pernul G. Towards OLAP security design — survey and
research issues. In: 3rd ACM international workshop on data
warehousing and OLAP (DOLAP’00). Washington DC, USA;
2000.

Priebe T, Pernul G. A pragmatic approach to conceptual
modeling of OLAP security. In: 20th International conference
on conceptual modeling (ER 2001). Yokohama, Japan:
Springer-Verlag; 2001.

Siponen M. Designing secure information systems and software
(academic dissertation). In: Department of information
processing science. OulLu, Finland: University of Oulo; 2002.

Thuraisingham B, Schlipper L, Samarati L, Lin TY, Jajodia S,
Clifton C. Security issues in data warehousing and data
mining: panel discussion. Database Security XI: status and
prospects 1998;3—16.

Vivas JL, Montenegro J, Lopez J. Towards a business process-
driven framework for security engineering with the UML. In:
Information security, 6th international conference (ISC
2003). Bristol, UK: Springer-Verlag; 2003.

Rodolfo Villarroel is MSc in Computer Science from the
Universidad Técnica Federico Santa Maria (Chile), and a PhD
student at the Escuela Superior de Informatica of the
Universidad de Castilla-La Mancha at Ciudad Real (Spain). He
is Assistant Professor in the Computer Science Department of
the Universidad Catdlica del Maule (Chile). His research
activities are security in data warehouses and information
systems, and software process improvement. He is author of
several papers on data warehouses security and improvement of
software configuration management process. He belongs to the
Chilean Computer Science Society (SCCC) and the Software
Process Improvement Network (SPIN-Chile).

Eduardo Fernandez-Medina is PhD and MSc in Computer
Science. He is Assistant Professor at the Escuela Superior de
Informatica of the Universidad de Castilla-La Mancha at Ciudad
Real (Spain). His research activities are security in databases,
data warehouses, web services and information systems, and
also in security metrics. He is the co-editor of several books and
chapter books on these subjects, and has several dozens of

http://www.csis.gvsu.edu/GeneralInfo/Oracle/network.920/a96578.pdf
http://www.csis.gvsu.edu/GeneralInfo/Oracle/network.920/a96578.pdf

Secure information systems development

321

papers in national and international conferences. He partic-
ipates at the ALARCOS research group of the Department of
Computer Science at the University of Castilla-La Mancha, in
Ciudad Real, Spain. He belongs to various professional and
research associations (ATIl, AEC, AENOR, IFIP WG11.3 etc.).

Mario Piattini is MSc and PhD in Computer Science from the
Politechnical University of Madrid. He is a certified information
system auditor by ISACA (Information System Audit and Control

Association). He is Associate Professor at the Escuela Superior
de Informatica of the Castilla-La Mancha University (Spain). He
is author of several books and papers on databases, software
engineering and information systems. He leads the ALARCOS
research group of the Department of Computer Science at the
University of Castilla-La Mancha, in Ciudad Real, Spain. His
research interests are: advanced database design, database
quality, software metrics, object-oriented metrics and software
maintenance.

Available online at www.sciencedirect.com

scmucs@mnsc-r@

	Secure information systems development - a survey and comparison
	Introduction
	Proposal of methodologies incorporating security
	MOMT: Multilevel Object Modeling Technique
	Business process-driven framework for security engineering
	UMLSec: Secure Systems Development Methodology using UML
	Secure Databases Design Methodology
	Security and Privacy Requirements Analysis Methodology within a Social Setting
	A Paradigm for Adding Security into IS Development Methods
	CoSMo: An Approach Towards Conceptual Security Modeling
	Using Aspects to Design a Secure System
	A Methodology for Secure Software Design
	ADAPTed UML: A Pragmatic Approach to Conceptual Modeling of OLAP Security
	A UML Extension for Secure Multidimensional Conceptual Modeling

	Comparison framework
	Comparison
	Conclusions
	Acknowledgements
	References

